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ABSTRACT 
This paper extended TOPSIS (Technique for Order Preference by Similarity Ideal Solution) method for solving 

Two-Level Large Scale Linear Multiobjective Optimization Problems with Stochastic Parameters in the right- 

hand side of the constraints (TL-LSLMOP-SP)rhs of  block angular structure. In order to obtain a compromise ( 

satisfactory) solution to the (TL-LSLMOP-SP)rhs of  block angular structure using the proposed TOPSIS 

method, a modified formulas for the distance function from the positive ideal solution (PIS ) and the distance 

function from the negative ideal solution (NIS) are proposed and modeled to include all the objective functions 

of the two levels. In every level, as the measure of ―Closeness‖ dp-metric is used,  a k-dimensional objective 

space is reduced to two –dimentional objective space by a first-order compromise procedure. The membership 

functions of fuzzy set theory is used to represent the satisfaction level for both criteria. A single-objective 

programming problem is obtained by using the max-min operator for the second –order compromise operaion. 

A decomposition algorithm for generating a compromise ( satisfactory) solution through TOPSIS approach is 

provided where the first level decision maker (FLDM) is asked to specify the relative importance of  the 

objectives. Finally, an illustrative numerical example is given to clarify the main results developed in the paper. 

Keywords - Stochastic Multiobjective Optimization,  Two-level decision Making Problems,  TOPSIS Method,  

Decomposition Techniques, Fuzzy Sets 

 

I. INTRODUCTION 
In real world decision situations, when formulating a Large Scale Linear Multiobjective Optimization 

(LSLMO) problem, some or all of the parameters of the optimization problem are described by stochastic (or 

random or probabilistic) variables rather than by deterministic quantities.  Most of LSLMO problems arising in 

applications have special structures that can be exploited. There are many familiar structures for large scale 

optimization problems such as: (i) the block angular structure, and (ii) angular and dual- angular structure to the 

constraints, and several kinds of decomposition methods for linear and nonlinear programming problems with 

those structures have been proposed in [2, 12, 13, 27, 29, 35, 43,44, 45, 49].  

Two-Level Large Scale Linear Multiobjective Optimization (TL-LSLMO) Problems with block angular 

structure consists of the objectives of the leader at its first level and that is of the follower at the second level. 

The decision maker (DM) at each level attempts to optimize his individual objectives, which usually depend in 

part on the variables controlled by the decision maker (DM)  at the other levels and their final decisions are 

executed sequentially where the FLDM  makes his decision firstly. The research and applications concentrated 

mainly on two-level programming (see f. i. [ 7, 8, 11, 14, 15, 16,  18, 19, 20,  21,  22,  24,  25, 26, 31,32, 33,  

48,52,53]). 

TOPSIS was first developed by C. L. Hwang and K. Yoon [37] for solving a multiple attributes decision 

making (MADM) problems. It is based upon the principle that the chosen alternative should have the shortest 

distance from the PIS and the farthest from the NIS. T. H. M. Abou-El-Enien [4] presents many algorithms for 

solving different kinds of LSLMO problems using TOPSIS method. 

M. A. Abo-Sinna and T. H. M. Abou-El-Enien [9] extended TOPSIS approach to solve large scale multiple 

objectives decision making (LSMODM)  problems with block angular structure.  

T. H. M. Abou-El-Enien [3] extended  TOPSIS method for solving large scale integer linear vector 

optimization  problems with chance constraints (CHLSILVOP)  of a special type.  

I. A. Baky and  M. A. Abo-Sinna [20] proposed a TOPSIS algorithm for bi-level multiple objectives 

decision making (BL-MODM) problems.  

T. H. M. Abou-El-Enien [5]  presents an interactive TOPSIS algorithm  for solving a special type of linear 

fractional vector optimization problems. 
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P.P. Dey et al. [28] extend TOPSIS  for  solving linear fractional bi-level multi-objective decision-making 

problem based on fuzzy goal programming. 

Recently, M. A. Abo-Sinna and T. H. M. Abou-El-Enien [11] extend TOPSIS  for  solving Large Scale Bi-

level  Linear Vector Optimization  Problems (LS-BL-LVOP), they further  extended the concept of TOPSIS 

[Lia et al. (45)] for LS-BL-LVOP. 

This paper extended TOPSIS method  for  solving  (TL-LSLMOP-SP)rhs of  block angular structure. Also,  

the concept of TOPSIS is extended  [Lia et al. (41)] for (TL-LSLMOP-SP)rhs of block angular structure. 

The following section will give the formulation of  (TL-LSLMOP-SP)rhs of block angular structure. The 

family of dp-distance and its normalization is discussed in section 3. The TOPSIS approach for (TL-LSLMOP-

SP)rhs of block angular is presented in section 4. By use of TOPSIS, a decomposition algorithm is proposed for 

solving (TL-LSLMOP-SP)rhs of block angular structure in section 5. An illustrative numerical example is given  

in section 6. Finally, summary and conclusions will be given in section 7. 

 

II. Formulation of  (TL-LSLMOP-SP)rhs of  block angular structure 
Consider there are two levels in a hierarchy structure with a first level decision maker (FLDM) and  second  

level decision maker (SLDM).  Let the (TL-LSLMOP-SP)rhs of the following block angular structure : 

[FLDM] 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑋𝐼1
 𝑍𝐼1 𝑋𝐼1 , 𝑋𝐼2 =

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑋𝐼1

 𝑧𝐼11 𝑋𝐼1 , 𝑋𝐼2 , … . , 𝑧𝐼1𝑘𝐼1 𝑋𝐼1 , 𝑋𝐼2                                                    (1-a) 

       𝑤ℎ𝑒𝑟𝑒 𝑋𝐼2  𝑠𝑜𝑙𝑣𝑒𝑠 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑒𝑣𝑒𝑙   

[SLDM] 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑋𝐼2
 𝑍𝐼2 𝑋𝐼1 , 𝑋𝐼2 =

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑋𝐼2

 𝑧𝐼21 𝑋𝐼1 , 𝑋𝐼2 , … . , 𝑧𝐼2𝑘𝐼2 𝑋𝐼1 , 𝑋𝐼2                                                    (1-b) 

subject to                                                                                                            

𝑋 ∈ 𝑀 = {𝑃{  𝑎𝑖𝑗 ℎ0
𝑥𝑖𝑗 ℎ0

  ≤𝑛
𝑖=1 𝑣ℎ0

} ≥
𝑞
𝑗=1 𝛼ℎ0

 ,                        ℎ0 = 1,2,3, … . ,𝑚0,                                  (1-c) 

                        𝑃   𝑏𝑖𝑗 ℎ𝑗𝑥𝑖𝑗 ℎ𝑗 ≤
𝑛
𝑖=1 𝑣ℎ𝑗  ≥ 𝛼ℎ𝑗 ,            ℎ𝑗 = 𝑚𝑗−1 + 1,𝑚𝑗−1 + 2,… . , 𝑚𝑗 ,                            (1-d) 

                                                           𝑥𝑖𝑗 ≥ 0, 𝑖 ∈ 𝑁, 𝑗 = 1,2, … , 𝑞, 𝑞 > 1}.                                                    (1-e)      

 where 

a and b are constants,  

k   :  the number of objective functions, 

𝑘𝐼1  : the number of objective functions of the  FLDM, 

𝑘𝐼2  : the number of objective functions of the  SLDM, 

𝑛𝐼1  : the number of variables of the FLDM, 

𝑛𝐼2  : the number of variables of the SLDM, 

q   : the number of  subproblems, 

m  : the number of constraints, 

n   : the numer of variables, 

𝑛𝑗  : the number of variables of the j
th

 subproblem,   j=1,2,…,q, 

mo    : the number of the common constraints represented by   𝑎𝑖𝑗 ℎ0
𝑥𝑖𝑗 ℎ0

  ≤𝑛
𝑖=1 𝑣ℎ0

𝑞
𝑗=1  

mj   : the number of independent constraints of the j
th

   subproblem represented by 

 𝑏𝑖𝑗 ℎ𝑗𝑥𝑖𝑗 ℎ𝑗 ≤

𝑛

𝑖=1

𝑣ℎ𝑗 , 𝑗 = 1,2, … , 𝑞, 𝑞 > 1, 

Aj   :  an (mo ×nj) coefficient matrix,  

Dj   :  an (mj ×nj) coefficient matrix,       

bo    :  an mo-dimensional column vector of right-hand sides of the  common constraints   whose  elements are 

constants,   

bj :  an mj-dimensional column vector of independent constraints  right-hand sides whose   elements are the   

       constants of the  constraints for the j
th

 subproblem,  j=1,2,…,q,    

Cij :  an nj-dimensional row vector for the j
th

 subproblem in the i
th

 objective function, 

R   : the set of all real numbers,  

X   :  an n-dimensional column vector of variables, 

Xj  :  an 𝑛𝑗  -dimensional column vector of variables for the j
th

  subproblem, j=1,2,…..,q,  

𝑋𝐼1    : an   𝑛𝐼1  - dimensional column vector of  variables of the FLDM, 

𝑋𝐼2    : an  𝑛𝐼2  - dimensional column vector of  variables of the SLDM, 

K  = {1,2,….,k} 
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N  = {1,2,…..,n},     
R

n
 = {X=(x1, x2,…,xn}

T
 : xiR, iN}.   

                If  the objective functions are linear, then the objective function can be written as follows: 

 𝑧𝑖(𝑋)= 𝑧𝑖𝑗
𝑞
𝑗=1 = 𝐶𝑖𝑗𝑋𝑗

𝑞
𝑗=1 , i=1,2,…,k                                                                                                         (2)     

In addition, P  means probability, 𝛼ℎ0
 and 𝛼ℎ𝑗 are a specified probability levels. For the sake of 

simplicity, consider that  the random parameters, 𝑣ℎ0
and  𝑣ℎ𝑗  are distributed normally and independently of each 

other with known means E{𝑣ℎ0
} and E{𝑣ℎ𝑗 } and variances Var{𝑣ℎ0

} and Var{𝑣ℎ𝑗 }.                                                                                                 

Using the chance constrained programming technique [3], the deterministic version of  problem (1) can 

be written as follows : 

[FLDM] 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑋𝐼1
 𝑍𝐼1 𝑋𝐼1 , 𝑋𝐼2 =

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑋𝐼1

 𝑧𝐼11 𝑋𝐼1 , 𝑋𝐼2 , … . , 𝑧𝐼1𝑘𝐼1 𝑋𝐼1 , 𝑋𝐼2                                                      (3-a)    

       𝑤ℎ𝑒𝑟𝑒 𝑋𝐼2  𝑠𝑜𝑙𝑣𝑒𝑠 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑒𝑣𝑒𝑙   

[SLDM] 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑋𝐼2
 𝑍𝐼2 𝑋𝐼1 , 𝑋𝐼2 =

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑋𝐼2

 𝑧𝐼21 𝑋𝐼1 , 𝑋𝐼2 , … . , 𝑧𝐼2𝑘𝐼2 𝑋𝐼1 , 𝑋𝐼2                                                     (3-b) 

 subject to 

 𝑋 ∈ 𝑀/ = {  𝑎𝑖𝑗 ℎ0
𝑥𝑖𝑗 ℎ0

  ≤𝑛
𝑖=1 𝐸{𝑣ℎ0

} + 𝑘𝛼0

𝑞
𝑗=1  𝑉𝑎𝑟{𝑣ℎ0

}, ℎ0 = 1,2, … . ,𝑚0 ,                                       (3-c)                                                                                         

 𝑏𝑖𝑗 ℎ𝑗𝑥𝑖𝑗 ℎ𝑗 ≤
𝑛
𝑖=1 𝐸{𝑣ℎ𝑗 } + 𝑘𝛼𝑗 𝑉𝑎𝑟{𝑣ℎ𝑗 },   ℎ𝑗 = 𝑚𝑗−1 + 1,𝑚𝑗−1 + 2,… . ,𝑚𝑗 ,                                             (3-d) 

 𝑥𝑖𝑗 ≥ 0, 𝑖 ∈ 𝑁, 𝑗 = 1,2, … , 𝑞, 𝑞 > 1}.                                                                                                               (3-e) 

where 𝑘𝛼𝑗 , j=0,1,2,….,q, is the standard normal value such that Φ(𝑘𝛼𝑗 )=1- 𝛼𝑗 , j=0,1,…,q,  and Φ represents the 

cumulative distribution function of the standard normal distribution.                 

                

III. Some Basic Concepts of distance Measures 
The compromise (satisfactory)  programming approach [ 17, 34, 36, 39, 40, 41, 42, 53, 54, 56] has been 

developed to perform multiobjective optimization problems, reducing  the set of nondominated solutions. The 

compromise solutions are those which are the closest by some distance measure to the ideal one.  

The point 𝑧𝑖 𝑋
∗ =  𝑧𝑖𝑗 (𝑋∗)

𝑞
𝑗=1   in the criteria space is called the ideal point (reference point). As the 

measure of  ―closeness‖, dp-metric is used. The dp-metric defines the distance between two points,   𝑧𝑖 𝑋 =
 𝑧𝑖𝑗 (𝑋)
𝑞
𝑗=1  and 𝑧𝑖 𝑋

∗ =  𝑧𝑖𝑗 (𝑋∗)
𝑞
𝑗=1   (the reference point) in k-dimensional space [50] as:    

𝑑𝑝 =   𝑤𝑖
𝑝 𝑧𝑖

∗ − 𝑧𝑖 
𝑝

𝑘

𝑖=1

 

1/𝑝

=   𝑤𝑖
𝑝
  𝑧𝑖𝑗

∗

𝑞

𝑗=1

− 𝑧𝑖𝑗

𝑞

𝑗=1

 

𝑝
𝑘

𝑖=1

 

1/𝑝

                                                                        (4) 

where 𝑝 ≥ 1. 

Unfortunately, because of the incommensurability among objectives, it is impossible to directly use the 

above distance family.  To remove the effects of the incommensurability, we need to normalize the distance 

family of equation (4)  by using the reference point [4, 36, 41]  as :  

𝑑𝑝 =   𝑤𝑖
𝑝
 
 𝑧𝑖𝑗

∗𝑞
𝑗=1 −  𝑧𝑖𝑗

𝑞
𝑗=1

 𝑧𝑖𝑗
∗𝑞

𝑗=1

 

𝑝𝑘

𝑖=1

 

1
𝑝 

                                                                                                         (5) 

where  𝑝 ≥ 1. 

To obtain a compromise (satisfactory ) solution for  problem (3) , the global criteria method [40] for 

problem (3) [4, 45] uses the distance family of equation (5) by the ideal solution being the reference point.  The 

problem becomes how to solve the following auxiliary problem : 

𝑑𝑝 =   𝑤𝑖
𝑝
 
 𝑧𝑖𝑗  𝑋

∗ 𝑞
𝑗=1 − 𝑧𝑖𝑗  𝑋 

𝑞
𝑗=1

 𝑧𝑖𝑗  𝑋
∗ 𝑞

𝑗=1

 

𝑝𝑘

𝑖=1

 

1/𝑝

𝑋∈𝑀/          
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                                                                        (6) 

where   𝑋∗ is the PIS and 𝑝 = 1,2, … . . , ∞. 
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Usually, the solutions based on PIS are different from the solutions based on NIS. Thus, both PIS(z∗)  and 

NIS(z−) can be used to normalize the distance family and obtain [4]:     

𝑑𝑝 =   𝑤𝑖
𝑝
 
 𝑧𝑖𝑗

∗𝑞
𝑗=1 −  𝑧𝑖𝑗

𝑞
𝑗=1

 𝑧𝑖𝑗
∗𝑞

𝑗=1 −  𝑧𝑖𝑗
−𝑞

𝑗=1

 

𝑝𝑘

𝑖=1

 

1/𝑝

                                                                                                          (7) 

where   𝑝 ≥ 1. 

 

IV. TOPSIS for (TL-LSLMOP-SP)rhs of  block angular structure 
Problem (3) can be rewritten as follows [4]:  

 [FLDM] 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒/𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑋𝐼1
 𝑍𝐼1 𝑋𝐼1 , 𝑋𝐼2 =

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒/𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑋𝐼1

 𝑧𝐼11 𝑋𝐼1 , 𝑋𝐼2 , … . , 𝑧𝐼1𝑘𝐼1 𝑋𝐼1 , 𝑋𝐼2   

𝑤ℎ𝑒𝑟𝑒 𝑋𝐼2  𝑠𝑜𝑙𝑣𝑒𝑠 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑒𝑣𝑒𝑙   

[SLDM] 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒/𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑋𝐼2
 𝑍𝐼2 𝑋𝐼1 , 𝑋𝐼2 =

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒/𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑋𝐼2

 𝑧𝐼21 𝑋𝐼1 , 𝑋𝐼2 , … . , 𝑧𝐼2𝑘𝐼2 𝑋𝐼1 , 𝑋𝐼2   

subject to                                                                                                                                                    (8) 

𝑋 ∈ 𝑀/        

 

where 

 𝑧𝑡𝑗
𝑞
𝑗=1 (𝑋): Objective Function for Maximization, 𝑡 ∈ 𝐾1 ⊏ 𝐾, 

 𝑧𝑣𝑗
𝑞
𝑗=1 (𝑋): Objective Function for Minimization, 𝑣 ∈ 𝐾2 ⊏ 𝐾.  

 

4-1. Phase (I) 

Consider the FLDM problem of problem (8): 

[FLDM] 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒/𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑋𝐼1
 𝑍𝐼1 𝑋𝐼1 , 𝑋𝐼2 =

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒/𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑋𝐼1

 𝑧𝐼11 𝑋𝐼1 , 𝑋𝐼2 , … . , 𝑧𝐼1𝑘𝐼1 𝑋𝐼1 , 𝑋𝐼2                                              

 subject to                                                                                                                                                 (9) 

𝑋 ∈ 𝑀/        

where 

 𝑧𝑡𝑗
𝑞
𝑗=1 (𝑋): Objective Function for Maximization, 𝑡 ∈ 𝐾1 ⊏ 𝐾, 

 𝑧𝑣𝑗
𝑞
𝑗=1 (𝑋): Objective Function for Minimization, 𝑣 ∈ 𝐾2 ⊏ 𝐾.  

In order to use the distance family of equation (7) to resolve problem (9), we must first find PIS(z∗)  

and NIS(z−) which are [4, 40]: 

𝑧∗
𝐹𝐿𝐷𝑀  

=
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑋 ∈ 𝑀/
 𝑧𝑡𝑗

𝐹𝐿𝐷𝑀𝑞
𝑗=1  𝑋  𝑜𝑟  𝑧𝑣𝑗

𝐹𝐿𝐷𝑀𝑞
𝑗=1  𝑋  , ∀𝑡 𝑎𝑛𝑑 𝑣                  (10-a) 

𝑧−
𝐹𝐿𝐷𝑀  

=
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 

𝑋 ∈ 𝑀/
 𝑧𝑡𝑗

𝐹𝐿𝐷𝑀𝑞
𝑗=1  𝑋  𝑜𝑟  𝑧𝑣𝑗

𝐹𝐿𝐷𝑀𝑞
𝑗=1  𝑋  , ∀𝑡 𝑎𝑛𝑑 𝑣                 (10-b)       

                                                     

where 𝐾 = 𝐾1 ∪ 𝐾2  , 

𝑧∗
FLDM  

=  𝑧1
∗𝐹𝐿𝐷𝑀 , 𝑧2

∗𝐹𝐿𝐷𝑀 , … . , 𝑧𝑘𝐼1
∗𝐹𝐿𝐷𝑀   and 𝑧−

FLDM  
= (𝑧1

−𝐹𝐿𝐷𝑀 , 𝑧2
−𝐹𝐿𝐷𝑀  , …… , 𝑧𝑘𝐼1

−𝐹𝐿𝐷𝑀 ) are the individual 

positive (negative) ideal solutions for  the FLDM.  

Using the PIS and the NIS  for the FLDM, we obtain the following distance functions from them, 

respectively: 

𝑑𝑃
𝑃𝐼𝑆FLDM  

=   𝑤𝑡
𝑝

𝑡∈𝐾1
 
 𝑧𝑡𝑗

∗FLDM𝑞
𝑗=1 − 𝑧𝑡𝑗

FLDM (𝑋)
𝑞
𝑗=1

 𝑧𝑡𝑗
∗FLDM𝑞

𝑗=1
− 𝑧𝑡𝑗

−𝐹𝐿𝐷𝑀𝑞
𝑗=1

 

𝑝

+  𝑤𝑣
𝑝

𝑣∈𝐾2
 
 𝑧𝑣𝑗

𝐹𝐿𝐷𝑀 (𝑋)
𝑞
𝑗=1 − 𝑧𝑣𝑗

∗𝐹𝐿𝐷𝑀𝑞
𝑗=1

 𝑧𝑣𝑗
−𝐹𝐿𝐷𝑀𝑞

𝑗=1
− 𝑧𝑣𝑗

∗𝐹𝐿𝐷𝑀𝑞
𝑗=1

 

𝑝

 

1
𝑝 

  (11-a)       

                                                                          (11-a)                                                                                                       

and 

𝑑𝑃
𝑁𝐼𝑆FLDM  

=   𝑤𝑡
𝑝

𝑡∈𝐾1
 
 𝑧𝑡𝑗

𝐹𝐿𝐷𝑀 (𝑋)
𝑞
𝑗=1 − 𝑧𝑡𝑗

−𝐹𝐿𝐷𝑀𝑞
𝑗=1

 𝑧𝑡𝑗
∗𝐹𝐿𝐷𝑀𝑞

𝑗=1
− 𝑧𝑡𝑗

−𝐹𝐿𝐷𝑀𝑞
𝑗=1

 

𝑝

+  𝑤𝑣
𝑝

𝑣∈𝐾2
 
 𝑧𝑣𝑗

−𝐹𝐿𝐷𝑀𝑞
𝑗=1 − 𝑧𝑣𝑗

𝐹𝐿𝐷𝑀 (𝑋)
𝑞
𝑗=1

 𝑧𝑣𝑗
−𝐹𝐿𝐷𝑀𝑞

𝑗=1
− 𝑧𝑣𝑗

∗𝐹𝐿𝐷𝑀𝑞
𝑗=1

 

𝑝

 

1
𝑝 

(11-b)                                                                                                                               

where 𝑤𝑖 = 1,2, … . , 𝑘, are the relative importance (weighs) of  objectives, and 𝑝 = 1,2, … . . , ∞. 



Tarek H. M. Abou-El-Enien Int. Journal of Engineering Research and Applications      www.ijera.com 

ISSN : 2248-9622, Vol. 5, Issue 4, ( Part -2) April 2015, pp.61-76 

 www.ijera.com                                                                                                                                65 | P a g e  

In order to obtain a compromise solution for the FLDM, we transfer  the FLDM of problem (9) into the 

following two-objective problem with two commensurable (but often conflicting) objectives [4, 41]:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑑𝑝
𝑃𝐼𝑆𝐹𝐿𝐷𝑀  

 𝑋  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑑𝑝
𝑁𝐼𝑆𝐹𝐿𝐷𝑀  

(𝑋) 

subject to                                                                                                                                                    (12) 

𝑋 ∈ 𝑀/ 

where  𝑝 = 1,2, … . . , ∞. 
 

Since these two objectives are usually conflicting to each other, we can simultaneously obtain their individual 

optima.  Thus, we can use membership functions to represent these individual optima. Assume that the 

membership functions (𝜇1 𝑋  and 𝜇2 𝑋 ) of two objective functions are linear. Then, based on the preference 

concept, we assign a larger degree to the one with shorter distance from the PIS for 𝜇1 𝑋  and assign a larger 

degree to the one with farther  distance from NIS for 𝜇2 𝑋 .  Therefore, as shown in figure (1), 𝜇1 𝑋 ≡
𝜇
𝑑𝑝
𝑃𝐼𝑆𝐹𝐿𝐷𝑀   𝑋  and 𝜇2 𝑋 ≡ 𝜇

𝑑𝑝
𝑁𝐼𝑆 𝐹𝐿𝐷𝑀   𝑋  can be obtained as the following (see [1, 6, 10, 11, 23, 38, 39, 47, 49,  

56]): 

 

𝜇1 𝑋 =

 
 
 

 
 1,                        𝑖𝑓 𝑑𝑝

𝑃𝐼𝑆𝐹𝐿𝐷𝑀  
 𝑋 <  𝑑𝑝

𝑃𝐼𝑆𝐹𝐿𝐷𝑀  
 
∗
,

1 −
𝑑𝑝
𝑃𝐼𝑆 𝐹𝐿𝐷𝑀  

 𝑋 − 𝑑𝑝
𝑃𝐼𝑆 𝐹𝐿𝐷𝑀  

 
∗

 𝑑𝑝
𝑃𝐼𝑆 𝐹𝐿𝐷𝑀  

 
−
− 𝑑𝑝

𝑃𝐼𝑆 𝐹𝐿𝐷𝑀  
 
∗ ,   𝑖𝑓  𝑑𝑝

𝑃𝐼𝑆𝐹𝐿𝐷𝑀  
 
−

0,                    𝑖𝑓  𝑑𝑝
𝑃𝐼𝑆𝐹𝐿𝐷𝑀  

 𝑋 >  𝑑𝑝
𝑃𝐼𝑆𝐹𝐿𝐷𝑀  

 
−

,

 ≥ 𝑑𝑝
𝑃𝐼𝑆𝐹𝐿𝐷𝑀  

(𝑋) ≥  𝑑𝑝
𝑃𝐼𝑆𝐹𝐿𝐷𝑀  

 
∗
,                  (13-a) 

 

𝜇2 𝑋 =

 
 
 

 
 1,                   𝑖𝑓𝑑𝑝

𝑁𝐼𝑆𝐹𝐿𝐷𝑀  
 𝑋 >  𝑑𝑝

𝑁𝐼𝑆𝐹𝐿𝐷𝑀  
 
∗
,

1 −
 𝑑𝑝
𝑁𝐼𝑆 𝐹𝐿𝐷𝑀  

 
∗
− 𝑑𝑝

𝑁𝐼𝑆 𝐹𝐿𝐷𝑀  
 𝑋 

 𝑑𝑝
𝑁𝐼𝑆 𝐹𝐿𝐷𝑀  

 
∗
− 𝑑𝑝

𝑁𝐼𝑆 𝐹𝐿𝐷𝑀  
 
− ,   𝑖𝑓 𝑑𝑝

𝑁𝐼𝑆𝐹𝐿𝐷𝑀  
 
−

0,                  𝑖𝑓𝑑𝑝
𝑁𝐼𝑆𝐹𝐿𝐷𝑀  

 𝑋 <  𝑑𝑝
𝑁𝐼𝑆𝐹𝐿𝐷𝑀  

 
−

,

 ≤ 𝑑𝑝
𝑁𝐼𝑆𝐹𝐿𝐷𝑀  

(𝑋) ≤  𝑑𝑝
𝑁𝐼𝑆𝐹𝐿𝐷𝑀  

 
∗
,                 (13-b) 

where 

 

 𝑑𝑝
𝑃𝐼𝑆𝐹𝐿𝐷𝑀  

 
∗

=   𝑑𝑃
𝑃𝐼𝑆𝐹𝐿𝐷𝑀  

𝑋∈𝑀/
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑋   𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑋𝑃𝐼𝑆

𝐹𝐿𝐷𝑀  
,  

 𝑑𝑝
𝑁𝐼𝑆𝐹𝐿𝐷𝑀  

 
∗

=   𝑑𝑃
𝑁𝐼𝑆𝐹𝐿𝐷𝑀  

𝑋∈𝑀/
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑋   𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑋𝑁𝐼𝑆

𝐹𝐿𝐷𝑀  
,  

 𝑑𝑝
𝑃𝐼𝑆𝐹𝐿𝐷𝑀  

 
−

= 𝑑𝑝
𝑃𝐼𝑆FLDM  

 𝑋𝑁𝐼𝑆
𝐹𝐿𝐷𝑀  

 𝑎𝑛𝑑  𝑑𝑝
𝑁𝐼𝑆𝐹𝐿𝐷𝑀  

 
−

= 𝑑𝑝
𝑁𝐼𝑆𝐹𝐿𝐷𝑀  

 𝑋𝑃𝐼𝑆
𝐹𝐿𝐷𝑀  

 . 

Now, by applying the max-min decision model which is proposed by R. E. Bellman and L. A. Zadeh [23] 

and extended by H. –J. Zimmermann [56], we can resolve problem (12). The satisfying decision of the FLDM 

problem (9), 𝑋∗
FLDM

= (𝑋𝐼1
∗FLDM

, 𝑋𝐼2
∗FLDM

), may be obtained by solving the following model:     

   

   𝜇𝐷 𝑋
∗FLDM

 =     𝑀𝑖𝑛.  𝜇1 𝑋 , 𝜇2 𝑋   𝑋∈𝑀/
 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒                                                                                 (14)          

     Finally,  if  𝛿𝐹𝐿𝐷𝑀 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ( 𝜇1 𝑋 ,  𝜇2 𝑋 ), the model (14) is equivalent to the form of  Tchebycheff 

model (see [30]), which is equivalent to the following model: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝛾𝐹𝐿𝐷𝑀 ,                                                                                                                                  (15-a) 

subject to 

𝜇1 𝑋 ≥ 𝛾𝐹𝐿𝐷𝑀 ,                                                                                                                                     (15-b) 

 𝜇2 𝑋 ≥ 𝛾𝐹𝐿𝐷𝑀 ,                                                                                                                                    (15-c) 

𝑋 ∈ 𝑀/,     𝛾𝐹𝐿𝐷𝑀 ∈  0,1 ,                                                                                                                     (15-d) 
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where 𝛿𝐹𝐿𝐷𝑀  is the satisfactory level for both criteria of the shortest distance from the PIS and the farthest 

distance from the NIS. It is well known that if the optimal solution  of (15) is the vector  𝛾∗
𝐹𝐿𝐷𝑀

, 𝑋∗
FLDM

 , then 

𝑋∗
FLDM

is a nondominated solution [36, 39, 51, 55]  of (12) and a satisfactory solution [4, 54] of the FLDM 

problem (9). 

 

 

 
 

               𝑑𝑝
𝑃𝐼𝑆𝐹𝐿𝐷𝑀  

 
∗
       𝑑𝑝

𝑁𝐼𝑆𝐹𝐿𝐷𝑀  
 
−

                                   𝑑𝑝
𝑃𝐼𝑆𝐹𝐿𝐷𝑀  

 
−

      𝑑𝑝
𝑁𝐼𝑆𝐹𝐿𝐷𝑀  

 
∗
  

Figure (1): The membership functions of   𝜇
𝑑𝑝
𝑃𝐼𝑆𝐹𝐿𝐷𝑀   𝑋  and  𝜇

𝑑𝑝
𝑁𝐼𝑆 𝐹𝐿𝐷𝑀   𝑋  

 

 

The basic concept of the two-level programming technique is that the FLDM sets his/her goals and/or 

decisions with possible tolerances which are described by membership functions of fuzzy set theory. According 

to this concept, let 𝜏𝑖
𝐿  and 𝜏𝑖

𝑅 , 𝑖 = 1,2, … , 𝑛𝐼1  be the maximum acceptable negative and positive tolerance 

(relaxation) values on the decision vector considered by the FLDM, 𝑋𝐼1
∗𝐹𝐿𝐷𝑀 =  𝑥𝐼11

∗𝐹𝐿𝐷𝑀 , 𝑥𝐼12
∗𝐹𝐿𝐷𝑀 , … . , 𝑥𝐼1𝑛𝐼1  

∗𝐹𝐿𝐷𝑀  . 

The tolerances give the SLDM  an extent feasible region to search for the satisfactory solution. If the feasible 

region is empty, the negative and positive tolerances must be increased to give the SLDM an extent feasible 

region to search for the satisfactory solution, [4, 36, 54]. The linear membership functions (Figure 2) for each of 

the 𝑛𝐼1components of the decision vector  𝑥𝐼11
∗𝐹𝐿𝐷𝑀 , 𝑥𝐼12

∗𝐹𝐿𝐷𝑀 , … . , 𝑥𝐼1𝑛𝐼1  
∗𝐹𝐿𝐷𝑀   controlled by the FLDM can be 

formulated as: 

 

 

𝜇𝐼1𝑖(𝑥𝐼1𝑖) =

 
 
 

 
 

𝑥𝐼1𝑖−  𝑋𝐼1𝑖
∗𝐹𝐿𝐷𝑀 −𝜏𝑖

𝐿 

𝜏𝑖
𝐿                              𝑖𝑓 𝑥𝐼1𝑖

∗𝐹𝐿𝐷𝑀 − 𝜏𝑖
𝐿 ≤ 𝑥𝐼1𝑖 ≤ 𝑥𝐼1𝑖

∗𝐹𝐿𝐷𝑀

 
 𝑋𝐼1𝑖

∗𝐹𝐿𝐷𝑀 +𝜏𝑖
𝑅 −𝑥𝐼1𝑖

𝜏𝑖
𝑅    𝑖𝑓 𝑥𝐼1𝑖

∗𝐹𝐿𝐷𝑀 ≤ 𝑥𝐼1𝑖 ≤ 𝑥𝐼1𝑖
∗𝐹𝐿𝐷𝑀 + 𝜏𝑖

𝑅 , 𝑖 = 1,2, … , 𝑛𝐼1 ,

0                                                              𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                (16) 

 

 

It may be noted that, the decision maker may desire to shift the range of 𝑥𝐼1𝑖 . Following Pramanik & Roy [47] 

and Sinha [50], this shift can be achieved. 
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Figure (2): The membership function of   the decision variable 𝑥𝐼1𝑖  

 

4-2. Phase (II) 

The SLDM problem of problem (8) can be written as follows: 

 [SLDM] 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑋𝐼2
 𝑍𝐼2 𝑋𝐼1 , 𝑋𝐼2 =

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑋𝐼2

 𝑧𝐼21 𝑋𝐼1 , 𝑋𝐼2 , … . , 𝑧𝐼2𝑘𝐼2 𝑋𝐼1 , 𝑋𝐼2   

 subject to                                                                                                                                                 (17)          

 𝑋 ∈ 𝑀/    
 

  where 

 𝑧𝑡𝑗
𝑞
𝑗=1 (𝑋): Objective Function for Maximization, 𝑡 ∈ 𝐾1 ⊏ 𝐾, 

 𝑧𝑣𝑗
𝑞
𝑗=1 (𝑋): Objective Function for Minimization, 𝑣 ∈ 𝐾2 ⊏ 𝐾.  

In order to use the distance family of equation (7) to resolve problem (17), we must first find PIS(z∗)  

and NIS z−  which are [4, 41]: 

 

𝑧∗
𝑆𝐿𝐷𝑀  

=
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑋 ∈ 𝑀/   
 𝑧𝑡𝑗
𝑞
𝑗=1  𝑋  𝑜𝑟  𝑧𝑣𝑗

𝑞
𝑗=1  𝑋  , ∀𝑡 𝑎𝑛𝑑 𝑣                             (18-a) 

𝑧−
𝑆𝐿𝐷𝑀  

=
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 

𝑋 ∈ 𝑀/   
 𝑧𝑡𝑗
𝑞
𝑗=1  𝑋  𝑜𝑟  𝑧𝑣𝑗

𝑞
𝑗=1  𝑋  , ∀𝑡 𝑎𝑛𝑑 𝑣                            (18-b)                                      

                                                                              

where  𝐾 = 𝐾1 ∪ 𝐾2 ,  

 𝑧∗
𝑆𝐿𝐷𝑀  

=  𝑧1
∗𝑆𝐿𝐷𝑀  

, 𝑧2
∗𝑆𝐿𝐷𝑀  

, … . , 𝑧𝑘𝐼2
∗𝑆𝐿𝐷𝑀  

  and 𝑧−
𝑆𝐿𝐷𝑀  

= (𝑧1
−𝑆𝐿𝐷𝑀  

, 𝑧2
−𝑆𝐿𝐷𝑀  

 , …… , 𝑧𝑘𝐼2
−𝑆𝐿𝐷𝑀  

) are the individual 

positive (negative) ideal solutions for the SLDM.  

In order to obtain a compromise (satisfactory ) solution to problem (8) using TOPSIS approach, the 

distance family of (7) to represent the distance function  from the positive ideal solution,  𝑑𝑃
𝑃𝐼𝑆TL  

, and the 

distance function  from the negative ideal solution,  𝑑𝑃
𝑁𝐼𝑆TL  

, can be proposed, in this paper, for the objectives of 

the FLDM  and the SLDM as follows: 

 

𝑑𝑃
𝑃𝐼𝑆TL  

=

  ( 𝑤𝑡
𝑝

𝑡∈𝐾1
 
 𝑧𝑡𝑗

∗FLDM𝑞
𝑗=1 − 𝑧𝑡𝑗

FLDM  𝑋 
𝑞
𝑗=1

 𝑧𝑡𝑗
∗FLDM𝑞

𝑗=1
− 𝑧𝑡𝑗

−𝐹𝐿𝐷𝑀𝑞
𝑗=1

 

𝑝

+  𝑤𝑣
𝑝

𝑣∈𝐾2
 
 𝑧𝑣𝑗

𝐹𝐿𝐷𝑀  𝑋 
𝑞
𝑗=1 − 𝑧𝑣𝑗

∗𝐹𝐿𝐷𝑀𝑞
𝑗=1

 𝑧𝑣𝑗
−𝐹𝐿𝐷𝑀𝑞

𝑗=1
− 𝑧𝑣𝑗

∗𝐹𝐿𝐷𝑀𝑞
𝑗=1

 

𝑝

+

 

      𝑤𝑡
𝑝

𝑡∈𝐾1
 
 𝑧𝑡𝑗

∗𝑆𝐿𝐷𝑀𝑞
𝑗=1 − 𝑧𝑡𝑗

𝑆𝐿𝐷𝑀  𝑋 
𝑞
𝑗=1

 𝑧𝑡𝑗
∗𝑆𝐿𝐷𝑀𝑞

𝑗=1
− 𝑧𝑡𝑗

−𝑆𝐿𝐷𝑀𝑞
𝑗=1

 

𝑝

+  𝑤𝑣
𝑝

𝑣∈𝐾2
 
 𝑧𝑣𝑗

𝑆𝐿𝐷𝑀  𝑋 
𝑞
𝑗=1 − 𝑧𝑣𝑗

∗𝑆𝐿𝐷𝑀𝑞
𝑗=1

 𝑧𝑣𝑗
−𝑆𝐿𝐷𝑀𝑞

𝑗=1
− 𝑧𝑣𝑗

∗𝑆𝐿𝐷𝑀𝑞
𝑗=1

 

𝑝

)
1
𝑝                      (19-a) 
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and 

 

𝑑𝑃
𝑁𝐼𝑆TL  

=   

( 𝑤𝑡
𝑝

𝑡∈𝐾1

 
 𝑧𝑡𝑗

𝐹𝐿𝐷𝑀 (𝑋)
𝑞
𝑗=1 −  𝑧𝑡𝑗

−𝐹𝐿𝐷𝑀𝑞
𝑗=1

 𝑧𝑡𝑗
∗𝐹𝐿𝐷𝑀𝑞

𝑗=1 −  𝑧𝑡𝑗
−𝐹𝐿𝐷𝑀𝑞

𝑗=1

 

𝑝

+  𝑤𝑣
𝑝

𝑣∈𝐾2

 
 𝑧𝑣𝑗

−𝐹𝐿𝐷𝑀𝑞
𝑗=1 −  𝑧𝑣𝑗

𝐹𝐿𝐷𝑀 (𝑋)
𝑞
𝑗=1

 𝑧𝑣𝑗
−𝐹𝐿𝐷𝑀𝑞

𝑗=1 − 𝑧𝑣𝑗
∗𝐹𝐿𝐷𝑀𝑞

𝑗=1

 

𝑝

+ 

 

   𝑤𝑡
𝑝

𝑡∈𝐾1

 
 𝑧𝑡𝑗

𝑆𝐿𝐷𝑀 (𝑋)
𝑞
𝑗=1𝑧 −  𝑧𝑡𝑗

−𝑆𝐿𝐷𝑀𝑞
𝑗=1

 𝑧𝑡𝑗
∗𝑆𝐿𝐷𝑀𝑞

𝑗=1 −  𝑧𝑡𝑗
−𝑆𝐿𝐷𝑀𝑞

𝑗=1

 

𝑝

+  𝑤𝑣
𝑝

𝑣∈𝐾2

 
 𝑧𝑣𝑗

−𝑆𝐿𝐷𝑀𝑞
𝑗=1 − 𝑧𝑣𝑗

𝑆𝐿𝐷𝑀 (𝑋)
𝑞
𝑗=1

 𝑧𝑣𝑗
−𝑆𝐿𝐷𝑀𝑞

𝑗=1 −  𝑧𝑣𝑗
∗𝑆𝐿𝐷𝑀𝑞

𝑗=1

 

𝑝

)
1
𝑝  

                                                                                                                                                                                  (19-b) 

where 𝑤𝑖 = 1,2, … . , 𝑘, are the relative importance (weighs) of  objectives, and 𝑝 = 1,2, … . . , ∞. 
 

In order to obtain a compromise (satisfactory) solution, we transfer  problem (8) into the following 

two-objective problem with two commensurable (but often conflicting) objectives [4, 41]:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑑𝑝
𝑃𝐼𝑆TL  

 𝑋  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑑𝑝
𝑁𝐼𝑆TL  

(𝑋) 

subject to                                                                                                                                                    (20) 

𝑋 ∈ 𝑀/ 

where  𝑝 = 1,2, … . . , ∞. 
Since these two objectives are usually conflicting to each other, we can simultaneously obtain their individual 

optima.  Thus, we can use membership functions to represent these individual optima. Assume that the 

membership functions (𝜇3 𝑋  and 𝜇4 𝑋 ) of two objective functions are linear. Then, based on the preference 

concept, we assign a larger degree to the one with shorter distance from the PIS for 𝜇3 𝑋  and assign a larger 

degree to the one with farther  distance from NIS for 𝜇4 𝑋 .  Therefore, as shown in figure (3), 𝜇3 𝑋 ≡
𝜇
𝑑𝑝
𝑃𝐼𝑆TL   𝑋  and 𝜇4 𝑋 ≡ 𝜇

𝑑𝑝
𝑁𝐼𝑆 TL   𝑋  can be obtained as the following (see [1, 6, 10, 11, 23, 38, 39, 47, 49,  

56]): 

 

𝜇3 𝑋 =

 
 
 

 
 1,                    𝑖𝑓 𝑑𝑝

𝑃𝐼𝑆TL  
 𝑋 <  𝑑𝑝

𝑃𝐼𝑆TL  
 
∗
,

1 −
𝑑𝑝
𝑃𝐼𝑆 TL  

 𝑋 − 𝑑𝑝
𝑃𝐼𝑆 TL  

 
∗

 𝑑𝑝
𝑃𝐼𝑆 TL  

 
/
− 𝑑𝑝

𝑃𝐼𝑆 TL  
 
∗ ,   𝑖𝑓  𝑑𝑝

𝑃𝐼𝑆TL  
 
−

0,                    𝑖𝑓  𝑑𝑝
𝑃𝐼𝑆TL  

 𝑋 >  𝑑𝑝
𝑃𝐼𝑆TL  

 
−

,

 ≥ 𝑑𝑝
𝑃𝐼𝑆TL  

(𝑋) ≥  𝑑𝑝
𝑃𝐼𝑆TL  

 
∗
,                                      (21-a)                   

𝜇4 𝑋 =

 
 
 

 
 1,                   𝑖𝑓𝑑𝑝

𝑁𝐼𝑆TL  
 𝑋 >  𝑑𝑝

𝑁𝐼𝑆TL  
 
∗
,

1 −
 𝑑𝑝
𝑁𝐼𝑆 TL  

 
∗
− 𝑑𝑝

𝑁𝐼𝑆 TL  
 𝑋 

 𝑑𝑝
𝑁𝐼𝑆 TL  

 
∗
− 𝑑𝑝

𝑁𝐼𝑆 TL  
 
− ,   𝑖𝑓 𝑑𝑝

𝑁𝐼𝑆TL  
 
−

0,                  𝑖𝑓𝑑𝑝
𝑁𝐼𝑆TL  

 𝑋 <  𝑑𝑝
𝑁𝐼𝑆TL  

 
−

,

 ≤ 𝑑𝑝
𝑁𝐼𝑆TL  

(𝑋) ≤  𝑑𝑝
𝑁𝐼𝑆TL  

 
∗
,                                       (21-b)                          

where 

 𝑑𝑝
𝑃𝐼𝑆TL  

 
∗

=   𝑑𝑃
𝑃𝐼𝑆TL

𝑋∈𝑀/
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑋   𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑋𝑃𝐼𝑆

TL  
,  

 𝑑𝑝
𝑁𝐼𝑆TL  

 
∗

=   𝑑𝑃
𝑁𝐼𝑆TL  

𝑋∈𝑀/
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑋   𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑋𝑁𝐼𝑆

TL  
,  

 𝑑𝑝
𝑃𝐼𝑆TL  

 
−

= 𝑑𝑝
𝑃𝐼𝑆TL  

 𝑋𝑁𝐼𝑆
TL  
 𝑎𝑛𝑑  𝑑𝑝

𝑁𝐼𝑆TL  
 
−

= 𝑑𝑝
𝑁𝐼𝑆TL  

 𝑋𝑃𝐼𝑆
TL  
 . 

Now, by applying the max-min decision model which is proposed by R. E. Bellman and L. A. Zadeh [23] and 

extended by H. –J. Zimmermann [56], we can resolve problem (20). The satisfactory solution of problem (8), 

𝑋∗
TL

, may be obtained by solving the following model:                                                  

   𝜇𝐷 𝑋
∗TL
 =     𝑀𝑖𝑛.  𝜇3 𝑋 , 𝜇4 𝑋   𝑋∈𝑀/      

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒                                                                                         (22)                                               
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Finally,  if  𝛿TL = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ( 𝜇3 𝑋 ,  𝜇4 𝑋 ), the model (22) is equivalent to the form of  Tchebycheff model 

(see [30]), which is equivalent to the following model: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝛾TL ,                                                                                                                                        (23-a) 

subject to 

𝜇3 𝑋 ≥ 𝛾TL ,                                                                                                                                           (23-b) 

 𝜇4 𝑋 ≥ 𝛾TL ,                                                                                                                                           (23-c) 

𝑥𝐼1𝑖−  𝑋𝐼1𝑖
∗𝐹𝐿𝐷𝑀 −𝜏𝑖

𝐿 

𝜏𝑖
𝐿 ≥ 𝛾TL , 𝑖 = 1,2, … , 𝑛𝐼1                                                                                                    (23-d) 

 𝑋𝐼1𝑖
∗𝐹𝐿𝐷𝑀 +𝜏𝑖

𝑅 − 𝑥𝐼1𝑖

𝜏𝑖
𝑅 ≥ 𝛾TL , 𝑖 = 1,2, … , 𝑛𝐼1                                                                                                    (23-e) 

𝑋 ∈ 𝑀/,     𝛾TL ∈  0,1 ,                                                                                                                             (23-f)   

 

where 𝛿TL  is the satisfactory level for both criteria of the shortest distance from the PIS and the farthest distance 

from the NIS. It is well known that if the optimal solution  of (23) is the vector  𝛾∗
TL

, 𝑋∗
TL
 , then 𝑋∗

TL
 is a 

nondominated solution of (20) and a satisfactory solution for the problem (8) [4, 11, 45]. 

 

 
Figure (3): The membership functions of   𝜇

𝑑𝑝
𝑃𝐼𝑆TL   𝑋  and  𝜇

𝑑𝑝
𝑁𝐼𝑆 TL   𝑋  

 

V. A decomposition algorithm of 

TOPSIS for solving (TL-LSLMOP-SP)rhs  of  block  angular  structure 
Thus, we can introduce the following  decomposition algorithm of  TOPSIS method  to gernerate a set of 

satisfactory solutions for (TL-LSLMOP-SP)rhs of  block  angular  structure: 

The algorithm (Alg-I): 

Phase (0): 

Step 1. Transform problem (1) to the form of problem (3). 

Step 2. Transform problem (3) to the form of problem (8). 

Phase (I): 

Step 3. Construct the PIS payoff table of problem (9) by using the   decomposition algorithm [27, 29, 43], and 

obtain  𝑧∗
FLDM  

=  𝑧1
∗𝐹𝐿𝐷𝑀 , 𝑧2

∗𝐹𝐿𝐷𝑀 , … . , 𝑧𝑘𝐼1
∗𝐹𝐿𝐷𝑀   the    individual positive ideal solutions.  

Step 4. Construct the NIS payoff table of problem (9) by using the decomposition algorithm, and obtain    

𝑧−
FLDM  

= (𝑧1
−𝐹𝐿𝐷𝑀 , 𝑧2

−𝐹𝐿𝐷𝑀  , …… , 𝑧𝑘𝐼1
−𝐹𝐿𝐷𝑀 ) , the individual negative ideal solutions.  

Step 5. Use equations (10 & 11) and the above steps (3 & 4)  to construct 𝑑𝑝
𝑃𝐼𝑆FLDM  

 and   𝑑𝑝
𝑁𝐼𝑆FLDM  

.      
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Step 6.  Ask the FLDM to select  

              p= p*{1, 2, …,  },  

Step 7.  Ask the FLDM to select  𝑤𝑖 = 𝑤𝑖
∗, 𝑖 = 1,2, … , 𝑘𝐼1 ,  where    𝑤𝑖 = 1

𝑘𝐼1
𝑖=1

, 

Step 8.  Use steps ( 4 & 6)  to compute 𝑑𝑝
𝑃𝐼𝑆FLDM  

    and  𝑑𝑝
𝑁𝐼𝑆FLDM  

. 

Step 9. Transform problem (9) to the form of   problem (12).               

Step 10. Construct the payoff  table of problem (12):  

                At  p = 1,  use the decomposition algorithm [27, 29, 43].                      

At   p ≥ 2, use the generalized reduced  gradient  method, [43, 44], and obtain: 

  𝑑𝑝
−𝐹𝐿𝐷𝑀 =   𝑑𝑝

𝑃𝐼𝑆FLDM  
 
−

,  𝑑𝑝
𝑁𝐼𝑆FLDM  

 
−
 ,  𝑑𝑝

∗𝐹𝐿𝐷𝑀 =   𝑑𝑝
𝑃𝐼𝑆FLDM  

 
∗
,  𝑑𝑝

𝑁𝐼𝑆FLDM  
 
∗
 . 

Step 11.   Construct  problem (15) by using the  membership functions  (13). 

Step 12.  Solve problem (15) to obtain   𝛾∗
𝐹𝐿𝐷𝑀

, 𝑋∗
FLDM

 .  

Step 13.  Ask the FLDM to select the maximum negative and positive tolerance values 𝜏𝑖
𝐿  and 𝜏𝑖

𝑅 , 𝑖 =

1,2, … , 𝑛𝐼1  on the decision vector 𝑋𝐼1
∗𝐹𝐿𝐷𝑀 =  𝑥𝐼11

∗𝐹𝐿𝐷𝑀 , 𝑥𝐼12
∗𝐹𝐿𝐷𝑀 , … . , 𝑥𝐼1𝑛𝐼1  

∗𝐹𝐿𝐷𝑀  .   

Phase (II): 

Step 14. Construct the PIS payoff table of problem (17) by using the   decomposition algorithm [27, 29, 43], and 

obtain  𝑧∗
SLDM  

=  𝑧1
∗𝑆𝐿𝐷𝑀 , 𝑧2

∗𝑆𝐿𝐷𝑀 , … . , 𝑧𝑘𝐼2
∗𝑆𝐿𝐷𝑀   the    individual positive ideal solutions.  

Step 15. Construct the NIS payoff table of problem (17) by using the decomposition algorithm, and obtain    

𝑧−
SLDM  

= (𝑧1
−SLDM  

, 𝑧2
−SLDM  

 , …… , 𝑧𝑘𝐼2
−SLDM  

)  the individual negative ideal solutions.  

Step 16. Use equations (18 & 19) and the above  steps (14 & 15) to construct 𝑑𝑝
𝑃𝐼𝑆TL  

  and  𝑑𝑝
𝑁𝐼𝑆TL  

. 

Step 17.  Ask the FLDM to select  𝑤𝑖 = 𝑤𝑖
∗, 𝑖 =     1,2, … , 𝑘,  where    𝑤𝑖 = 1𝑘

𝑖=1 , 

Step 18. Use steps (14 , 15 & 16) to compute 𝑑𝑝
𝑃𝐼𝑆TL  

  and  𝑑𝑝
𝑁𝐼𝑆TL

. 

Step 19. Transform problem (8) to the form of problem (20).   

Step 20. Construct the payoff  table of problem (20):  

                At  p=1,use the decomposition algorithm [27, 29, 43],                      

 At   p≥2, use the generalized reduced gradient  method, [46, 47], and obtain: 

  𝑑𝑝
−TL  

=   𝑑𝑝
𝑃𝐼𝑆TL  

 
−

,  𝑑𝑝
𝑁𝐼𝑆TL

 
−
 ,  𝑑𝑝

∗𝑇𝐿 =   𝑑𝑝
𝑃𝐼𝑆TL  

 
∗
,  𝑑𝑝

𝑁𝐼𝑆TL  
 
∗
 . 

Step 21.  Use equations (13 and 18) to construct  problem (23). 

Step 22.  Solve problem (23)  to obtain  𝛾∗
TL

, 𝑋∗
TL
 . 

Step 23.  If the FLDM is satisfied with the current  solution , go to step 24.  Otherwise, go to  step 6.  

Step 24. Stop.  

 

VI. An illustrative numerical example 

Consider the following (TL-LSLMOP-SP)rhs  of  block  angular  structure: 

 [FLDM] 

𝑓11 𝑋 𝑥1    , 𝑥2       
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   =    4𝑥1 + 6𝑥2 − 𝑥3 + 7𝑥4                                                                                               (24 − 1) 

𝑓12 𝑋 𝑥1    , 𝑥2       
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   = −2𝑥1 + 9𝑥2  + 13𝑥3 + 𝑥4                                                                                            24 − 2  

𝑓13 𝑋 𝑥1    , 𝑥2       
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 =     −𝑥1 + 3𝑥2 − 𝑥3 + 𝑥4                                                                                                 (24 − 3) 

𝑓14 𝑋 𝑥1    , 𝑥2       
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 =      6𝑥1 − 2𝑥2   + 𝑥3 + 𝑥4                                                                                              (24 − 4) 

𝑤ℎ𝑒𝑟𝑒 𝑥1 , 𝑥2  𝑠𝑜𝑙𝑣𝑒𝑠 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑒𝑣𝑒𝑙   
[SLDM] 

𝑓21 𝑋 𝑥3    , 𝑥4         
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  = 𝑥1 − 5𝑥2   + 3𝑥3 + 19𝑥4                                                                                           (24 − 5) 

𝑓22 𝑋 𝑥3    , 𝑥4       
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = 4𝑥1 + 𝑥2 + 𝑥3 − 𝑥4                                                                                                      (24 − 6) 

subject to 

𝑃{𝑥1 + 𝑥2   + 𝑥3 + 𝑥4   ≤ 6𝑣1} ≥ 0.7257,                                                                                              (24 − 7) 

𝑃{5𝑥1 + 𝑥2                      ≤ 7𝑣2} ≥ 0.5,                                                                                                     (24 − 8)  
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                  𝑃{𝑥3 + 𝑥4 ≤ 8𝑣3} ≥ 0.9015,                                                                                                 (24 − 9) 

                            𝑥1 , 𝑥2 , 𝑥3, 𝑥4 ≥ 0                                                                                                            (24 − 10)    

Suppose that     𝑣𝑖 , 𝑖 = 1,2,3         are linearly independent normal distributed parameters with the following 

means and variances: 𝐸 𝑣1 = 8, 𝐸 𝑣2 = 2, 𝐸 𝑣3 = 1 , 𝑉𝑎𝑟 𝑣1 = 25, 𝑉𝑎𝑟 𝑣2 = 4, 𝑉𝑎𝑟 𝑣3 = 25 . 

Solution: 

By using problem (3), we can have 

[FLDM] 

𝑓11 𝑋 𝑥1    , 𝑥2       
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   =    4𝑥1 + 6𝑥2 − 𝑥3 + 7𝑥4                                                                                      (25 − 1) 

𝑓12 𝑋 𝑥1    , 𝑥2       
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   = −2𝑥1 + 9𝑥2  + 13𝑥3 + 𝑥4                                                                                    25 − 2  

𝑓13 𝑋 𝑥1    , 𝑥2       
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 =     −𝑥1 + 3𝑥2 − 𝑥3 + 𝑥4                                                                                         (25 − 3) 

𝑓14 𝑋 𝑥1    , 𝑥2       
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 =      6𝑥1 − 2𝑥2   + 𝑥3 + 𝑥4                                                                                       (25 − 4) 

𝑤ℎ𝑒𝑟𝑒 𝑥1 , 𝑥2  𝑠𝑜𝑙𝑣𝑒𝑠 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑒𝑣𝑒𝑙   

[SLDM] 

𝑓21 𝑋 𝑥3    , 𝑥4         
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  = 𝑥1 − 5𝑥2   + 3𝑥3 + 19𝑥4                                                                                      (25 − 5) 

𝑓22 𝑋 𝑥3    , 𝑥4       
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = 4𝑥1 + 𝑥2 + 𝑥3 − 𝑥4                                                                                                 (25 − 6) 

subject to 

𝑥1 + 𝑥2   + 𝑥3 + 𝑥4   ≤ 66,                                                                                                                   (25 − 7) 

5𝑥1 + 𝑥2                      ≤ 14,                                                                                                                   (25 − 8)  

                     𝑥3 + 𝑥4 ≤ 59.6,                                                                                                                 (25 − 9) 

              𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ≥ 0                                                                                                                      (25 − 10)    

 

- Obtain PIS and NIS  payoff tables for  the FLDM of problem (25). 

 

Table (1) : PIS payoff  table for the FLDM of problem (25) 

 𝑓11  𝑓12  𝑓13  𝑓14  𝑥1    𝑥2 𝑥3 𝑥4 

𝑓11 𝑋 𝑥1    , 𝑥2       
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   455.6 117.2 78.8 46.8 0 6.4 0 59.6 

𝑓12 𝑋 𝑥1    , 𝑥2       
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   -21.2 832.4 -40.8 46.8 0 6.4 59.6 0 

𝑓13 𝑋 𝑥1    , 𝑥2       
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  -48.4 769.2 -62.4 76.4 2.8 0 59.6 0 

𝑓14 𝑋 𝑥1    , 𝑥2       
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  84 126 42 -14 0 14 0 0 

               PIS:   𝑓∗
FLDM  

= (455.6 , 832.4 , -62.4 , -14) 

 

 

Table (2) : NIS payoff table for the FLDM of  problem (25) 

 𝑓11  𝑓12  𝑓13  𝑓14  𝑥1    𝑥2 𝑥3 𝑥4 

𝑓11 𝑋 𝑥1    , 𝑥2       
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   -59.6

 - 
774.8 -59.6 -59.6 0 0 59.6 0 

𝑓12 𝑋 𝑥1    , 𝑥2       
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   11.2 -5.6 

- 
-2.8 16.8 2.8 0 0 0 

𝑓13 𝑋 𝑥1    , 𝑥2       
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  448 178 94 

- 
24 0 14 0 52 

𝑓14 𝑋 𝑥1    , 𝑥2       
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  428.4 54 56.8 136 

- 
2.8 0 0 59.6 

               NIS: 𝑓−
FLDM  

= (-59.6   , -5.6  ,  94  , 136) 

 

- Next, compute equation (11) and obtain the following equations: 
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𝑑𝑃
𝑃𝐼𝑆FLDM  

=  𝑤11
𝑝
 

455.6 − 𝑓11(𝑋)

455.6 − (−59.6)
 

𝑝

+ 𝑤12
𝑝
 

832.4 − 𝑓12(𝑋)

832.4 − (−5.6)
 

𝑝

+ 𝑤13
𝑝
 
𝑓13 𝑥 − (−62.4)

94 − (−62.4)
 

𝑝

+ 𝑤14
𝑝
 
𝑓14 𝑥 − (−14)

136 − (−14)
 

𝑝

 

1
𝑝 

 

𝑑𝑃
𝑁𝐼𝑆FLDM  

=  𝑤11
𝑝
 
𝑓11(𝑋) − (−59.6)

455.6 − (−59.6)
 

𝑝

+𝑤12
𝑝
 
𝑓12(𝑋) − (−5.6)

832.4 − (−5.6)
 

𝑝

+ 𝑤13
𝑝
 

94 − 𝑓13 𝑥 

94 − (−62.4)
 

𝑝

+ 𝑤14
𝑝
 

136 − 𝑓14 𝑥 

136 − (−14)
 

𝑝

 

1
𝑝 

 

- Thus,  problem (12) is obtained.  

- In order to get numerical solutions, assume that 𝑤11
𝑝

= 𝑤12
𝑝

= 𝑤13
𝑝

= 𝑤14
𝑝

= 0.25   and  p=2, 

 

Table (3) : PIS  payoff table of problem (12), when  p=2. 

 𝑑2
𝑃𝐼𝑆FLDM  

 𝑑2
𝑁𝐼𝑆FLDM  

 𝑥1  𝑥2 𝑥3  𝑥4 

𝑀𝑖𝑛. 𝑑2
𝑃𝐼𝑆FLDM  

 0.2182
* 

0.2945
- 

0 10.8954 35.2202 19.8844 

𝑀𝑎𝑥. 𝑑2
𝑁𝐼𝑆FLDM  

 0.3029
- 

0.2269
* 

2.8 0 6.0063 27.1433 

𝑑2
∗𝐹𝐿𝐷𝑀 =  (0.2182 , 0.2269 ) , 𝑑2

−𝐹𝐿𝐷𝑀 = (0.3029 , 0.2945 ). 

- Now, it is easy to compute (15) :  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝛾FLDM  
subject to 

𝑥1 + 𝑥2   + 𝑥3 + 𝑥4   ≤ 66,                                           
5𝑥1 + 𝑥2                     ≤ 14,                                               
                    𝑥3 + 𝑥4 ≤ 59.6,                                                                  

 
𝑑2
𝑃𝐼𝑆FLD M  

 𝑋 −  0.2182  

0.3029−0.2182
 ≥ 𝛾FLDM  ,   

 
   0.2269 − 𝑑2

𝑁𝐼𝑆FLDM  
 𝑋 

  0.2269 − 0.2945   
 ≥ 𝛾FLDM ,   

        𝑥1 , 𝑥2, 𝑥3 , 𝑥4 ≥ 0 , 𝛾FLDM ∈  0,1    .                 
 

The maximum ―satisfactory level‖ (𝛾FLDM =1) is achieved for the solution 𝑋1
∗𝐹𝐿𝐷𝑀 =0     , 𝑋2

∗𝐹𝐿𝐷𝑀 =13.2092 ,   

𝑋3
∗𝐹𝐿𝐷𝑀 =0, 𝑋4

∗𝐹𝐿𝐷𝑀 =0  and  𝑓11 , 𝑓12 , 𝑓13 , 𝑓14 = (79.2552  , 118.8828  , 39.6276    , −26.4184 ). Let the 

FLDM decide 𝑋1
∗𝐹𝐿𝐷𝑀 = 0        and 𝑋2

∗𝐹𝐿𝐷𝑀 = 13.2092   with positive tolerance 𝜏𝑅 = 0.5 𝑎𝑛𝑑   𝜏𝐿 = 0.5   . 

 

- Obtain PIS and NIS  payoff  tables for  the SLDM of Problem (25). 

 

 

Table (4) : PIS payoff  table for  the SLDM of problem (25) 

 𝑓21  𝑓22  𝑥1  𝑥2 𝑥3  𝑥4 

𝑓21 𝑋 𝑥3    , 𝑥4         
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   1135.2

* 
-48.4 2.8 0 0 59.6 

𝑓22 𝑋 𝑥3    , 𝑥4       
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  1132.4 -59.6

* 
0 0 0 59.6 

PIS:   𝑓∗
SLDM  

=(1135.2 ,  -59.6) 

 

Table (5) : NIS payoff table for the SLDM of  problem (24) 

 𝑓21  𝑓22    𝑥1    𝑥2 𝑥3  𝑥4 

𝑓21 𝑋 𝑥3    , 𝑥4        
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   -70

 - 
14 0 14 0 0 

𝑓22 𝑋 𝑥3    , 𝑥4      
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  158.2 71.7

 - 
1.9 4.5 59.6 0 

NIS: 𝑓−
SLDM  

=(-70 , 71.7 ) 
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- Next, compute equation (19) and obtain the following equations: 

 

𝑑𝑃
𝑃𝐼𝑆TL  

=  𝑤11
𝑝
 

455.6 − 𝑓11(𝑋)

455.6 − (−59.6)
 

𝑝

+𝑤12
𝑝
 

832.4 − 𝑓12(𝑋)

832.4 − (−5.6)
 

𝑝

+ 𝑤13
𝑝
 
𝑓13 𝑥 − (−62.4)

94 − (−62.4)
 

𝑝

+ 𝑤14
𝑝
 
𝑓14 𝑥 − (−14)

136 − (−14)
 

𝑝

+ 𝑤25
𝑝
 

1135.2 − 𝑓21(𝑋)

1135.2 − (−70)
 

𝑝

+ 𝑤26
𝑝
 
𝑓22 𝑋 − (−59.6)

71.7 − (−59.6)
 

𝑝

 

1
𝑝 

 

𝑑𝑃
𝑁𝐼𝑆TL  

=  𝑤11
𝑝
 
𝑓11(𝑋) − (−59.6)

455.6 − (−59.6)
 

𝑝

+ 𝑤12
𝑝
 
𝑓12(𝑋) − (−5.6)

832.4 − (−5.6)
 

𝑝

+ 𝑤13
𝑝
 

94 − 𝑓13 𝑥 

94 − (−62.4)
 

𝑝

+  𝑤14
𝑝
 

136 − 𝑓14 𝑥 

136 − (−14)
 

𝑝

+ 𝑤25
𝑝
 
𝑓21 𝑋 − (−70)

1135.2 − (−70)
 

𝑝

+ 𝑤26
𝑝
 

71.7 − 𝑓22 𝑋 

71.7 − (−59.6)
 

𝑝

 

1
𝑝 

 

- Thus,  problem (20) is obtained.  

- In order to get numerical solutions, assume that 𝑤21
𝑝

=0.2   ,   𝑤22
𝑝

=0.2 ,   𝑤23
𝑝

=0.2   ,    𝑤24
𝑝

=0.2   ,     

𝑤25
𝑝

  = 0.1    ,  𝑤26
𝑝

 =0.1 and p=2, 

 

Table (6) : PIS  payoff  table of problem (20), when  p=2. 

 𝑑2
𝑃𝐼𝑆BL

 𝑑2
𝑁𝐼𝑆BL  

 x1 x2 x3 x4 

𝑀𝑖𝑛. 𝑑2
𝑃𝐼𝑆BL  

 0.1934∗ 0.2329− 0 6.4 31.8117 27.7883 

𝑀𝑎𝑥. 𝑑2
𝑁𝐼𝑆BL  

 0.2936− 0.2257∗ 0 1.6426 0.4845 0 

𝑑2
∗𝐵𝐿 =(0.1934 , 0.2257 ) ,             𝑑2

−𝐵𝐿 =(0.2936 , 0.2329). 

- Now, it is easy to compute (23) :  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝛾BL  
subject to 

𝑥1 + 𝑥2   + 𝑥3 + 𝑥4   ≤ 66,                                                   
5𝑥1 + 𝑥2                     ≤ 14,                     
                  𝑥3 + 𝑥4 ≤ 59.6,                                           

 
𝑑2
𝑃𝐼𝑆BL  

 𝑋 −    0.1934  

0.2936 −   0.1934 
 ≥ 𝛾BL  ,  

 
     0.2257  − 𝑑2

𝑁𝐼𝑆BL  
 𝑋 

 0.2257 −  0.2329
 ≥ 𝛾BL ,   

 
 0 + 0.5 − 𝑥1

0.5
 ≥ 𝛾BL , 

 
𝑥1 −  0 − 0.5 

0.5
 ≥ 𝛾BL , 

 
 13.2092 + 0.5 − 𝑥2

0.5
 ≥ 𝛾BL , 

 
𝑥2 −  13.2092 − 0.5 

0.5
 ≥ 𝛾BL , 

    𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ≥ 0 ,          𝛾BL ∈  0,1    .                 

The maximum ―satisfactory level‖ (𝛿BL = 0.9042 ) is achieved for the solution 𝑋1
∗𝐵𝐿 = 0     , 𝑋2

∗𝐵𝐿 = 13.1613       

, 𝑋3
∗𝐵𝐿 =   0      , 𝑋4

∗𝐵𝐿 =  0 . 

VI. Summary and Concluding remarks 

       In this paper, a TOPSIS approach has been extended to solve (TL-LSLMOP-SP)rhs  of  block  angular  

structure. The (TL-LSLMOP-SP)rhs  of  block  angular  structure using TOPSIS approach provides an effective 

way to find the compromise ( satisfactory) solution of such problems. In order to obtain a compromise ( 



Tarek H. M. Abou-El-Enien Int. Journal of Engineering Research and Applications      www.ijera.com 

ISSN : 2248-9622, Vol. 5, Issue 4, ( Part -2) April 2015, pp.61-76 

 www.ijera.com                                                                                                                                74 | P a g e  

satisfactory) integer solution to the (TL-LSLMOP-SP)rhs  of  block  angular  structure using the proposed 

TOPSIS approach, a modified formulas for the distance function from the PIS and the distance function from 

the NIS are proposed and modeled to include all objective functions of both the first and the second levels. 

Thus, the two-objective problem is obtained which can be solved by using membership functions of fuzzy set 

theory to represent the satisfaction  level  for both criteria and obtain TOPSIS, compromise solution by a 

second–order compromise. The max-min operator is then considered as a suitable one to resolve the conflict 

between the new criteria (the shortest distance from the PIS  and the longest distance from the NIS). An 

interactive TOPSIS algorithm for  solving these problems are also proposed. It is based on the decomposition 

algorithm of  (TL-LSLMOP-SP)rhs  of  block  angular  structure via TOPSIS approach, [5]. This algorithm has 

few features, (i) it combines both (TL-LSLMOP-SP)rhs  of  block  angular  structure and TOPSIS approach to 

obtain TOPSIS's compromise solution of the problem, (ii) it can be efficiently coded. (iii) it was found that the 

decomposition based method generally met with better results than the traditional simplex-based methods. 

Especially, the efficiency of the decomposition-based method increased sharply with the scale of the problem. 

An illustrative numerical example is given to demonstrate the proposed TOPSIS approach and the 

decomposition algorithm. 
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